Photoinduced Irreversible Insertion of CO₂ into a Metal-Hydride Bond

B. Patrick Sullivan* and Thomas J. Meyer

Department of Chemistry, The University of North Carolina, Chapel Hill, North Carolina 27514, U.S.A.

The reactive organometallic trifluoromethanesulphonato $(CF_3SO_3^-)$ complex fac-Re(bpy) $(CO)_3CF_3SO_3$ (bpy = 2,2'-bipyridine) has been used as a basis for the synthesis of the series of complexes fac-Re(bpy) $(CO)_3X$ (X = H, O_2CH , and O_2COH) all of which are involved in the reduction of CO_2 ; the hydrido complex has been found to undergo a slow thermal reaction with CO_2 to give the formato complex, a reaction which is greatly enhanced by visible light.

A new strategy for the reduction of carbon dioxide is based on the use of redox-active molecular excited states to both bind and reduce CO_2 to products such as carbon monoxide or the formate anion. Recently Hawecker, Lehn, and Ziessel¹ have observed the photoinduced reduction of CO_2 to CO based on fac-Re¹(bpy)(CO)₃Cl²-³ (bpy = 2,2′-bipyridine) where a 'sacrificial' reductive quencher such as triethanolamine is the reducing agent. Possible intermediates⁴-7 in this and related thermal or photochemical CO_2 reduction schemes are complexes like $M(S)^+$ (S = solvent), $M(\eta$ - CO_2)+, M- O_2 COH, M- O_2 CH, M=COH, or $M(CO)^+$, or their reduced forms, where M is, for example, the fac-Re¹(bpy)(CO)₃+ unit. Indeed, the formato complex Re(bpy)(CO)₃O₂CH has been isolated by Hawecker et al. in the reduction of CO_2 and could be an intermediate in the production of free CO.¹

We have developed synthetic routes to a variety of carbonyl and hydride containing polypyridyl complexes of Re^{1} ,8.9 Os^{II} ,10.11,12 Ru^{II} ,11.12 and Ir^{III} ,13 and have described some of the thermal and photochemical properties of the series, Recently, we have extended our synthetic work to the preparation of the new trifluoromethanesulphonato complex *fac*-Re(bpy)(CO)₃O₃SCF₃ in which the lability of the CF₃SO₃-group is used for the preparation of the complexes *fac*-Re(bpy)(CO)₃X (X = O₂COH, O₂CH, and H) in high yield. Especially notable is the hydrido complex since it provides the first reported example of a visible light induced reaction leading to the reduction of CO_2 to a thermally stable formato complex.¹⁴

The trifluoromethanesulphonato derivative $^{11.13.15.16}$ can be made conveniently and in high yield by the reaction between anhydrous CF_3SO_3H (6 × 10^{-3} mol, ca. 0.9 g) and the corresponding chloro complex (ca. 10^{-3} mol) in CH_2Cl_2 by stirring the reaction mixture at room temperature for 1 h [equation (1)]. Precipitation of the complex by the slow addition of Et_2O with continued stirring yields light yellow crystals in better than 90% yield.

$$fac$$
-Re(bpy)(CO)₃Cl + CF₃SO₃H $\xrightarrow{\text{CH}_2\text{Cl}_2} fac$ -Re(bpy)(CO)₃-O₃SCF₃ + HCl (1)

fac-Re(bpy)(CO)₃SO₃CF₃ is soluble in low-polarity solvents like CH₂Cl₂ but dissolves with ionization in polar solvents like MeCN or H₂O (with gentle heating) to give the solvato complex, e.g., equation (2). The Re^I-aqua complex

$$fac\text{-Re(bpy)(CO)}_3O_3SCF_3 + H_2O \rightarrow fac\text{-[Re(bpy)(CO)}_3(H_2O)]^+ + O_3SCF_3$$
 (2)

provides an ideal intermediate for the preparation of the hydrido, formato, and hydrogen carbonato derivatives. In a typical reaction on a 1 mmol scale, a $10\times$ or $20\times$ molar excess of the sodium salts of BH₄-, HCO₂-, or HOCO₂- and the aqua complex were heated at reflux for 15—45 min in a 2:1

mixture of EtOH- H_2O . Slow removal of the solvent gave crystals of the desired complex which were then washed with H_2O and air dried.

Characterization of all of the complexes was achieved by elemental analyses,† cyclic voltammetry, and i.r., u.v.-visible, and ¹H n.m.r. spectroscopy (see Table 1). The products all have the *facial* geometry as shown by the appearance of three CO stretches in the 1500 to 2100 cm⁻¹ region of the i.r. spectrum and two doublets and two triplets, in the first order, in the ¹H n.m.r. spectrum of the bpy region.

Irradiation with near u.v.-visible light‡ of an orange solution of fac-Re(bpy)(CO)₃H in freshly distilled tetrahydrofuran (THF), C₆H₆, or C₆D₆, which had been saturated with CO₂ (either Matheson 99.995% research grade or 'Bone Dry' Grade), resulted in a brownish-green solution which rapidly deposited the formato complex fac-Re(bpy)(CO)₃O₂CH. The identity of the product was demonstrated by its characteristic ¹H n.m.r. spectral and cyclic voltammetric properties. A small preparative scale reaction employing 50 mg of the hydride complex in 50 ml of CO₂-saturated THF formed the formato complex in 81% yield as determined by ¹H n.m.r. spectral analysis and by mass balance. The remaining Re product was present as two as yet uncharacterized complexes.

There is also a relatively slow thermal reaction between CO_2 and fac-Re(bpy)($CO)_3$ H. For example, 2.0×10^{-4} M solution of the complex in THF proceeds to completion in ca. 5 h as shown by spectral monitoring. Using the photolytic conditions described above the reaction is complete within 10 min

Although both the thermal and photochemical reactions can be described in the net sense by the CO_2 insertion reaction shown in equation (3), the chemistry involved has some unusual features and it poses a series of tantalizing mechanistic questions.

$$fac$$
-Re(bpy)(CO₃)H + CO₂ $\xrightarrow{\text{Heat or } hv}$ fac -Re(bpy)(CO)₃O₂CH (3)

Unlike most of the reported cases of CO₂ insertion into M–H bonds observed for group 8 metals, no dynamic thermal equilibrium exists in the Re system between the formato and hydrido complexes.^{5—7} In our case addition of CO₂ occurs at a formal co-ordinatively saturated metal centre, and while a mechanism involving CO dissociation¹⁷ may be operative, the thermal stability of the *fac*-Re¹(bpy)(CO)₃+ unit toward CO loss is known to be high. The photoinduced reaction is clearly

[†] Elemental analyses of the new complexes supported the assigned structures.

[‡] A 275 W sunlamp with a 360 nm cut off filter was used in conjunction with a water cooled sample holder. For the spectral studies a 1000 W xenon lamp was used with a monochromator which isolated 436 nm light.

Table 1. Characteristics of the Re^I complexes.

	$\delta_{\mathrm{H}^{\mathrm{a}}}$	v_{CO}/cm^{-1}	$E_{rac{1}{2}}/\mathrm{V}^{\mathrm{b}}$	λ/nm^c
fac-Re(bpy)(CO) ₃ OSO ₂ CF ₃	$7.64(t), 8.20(t), 8.26(d), 9.08(d)^{d}$	2030,1941,1921 ^d	d	360 ^d
fac-Re(bpy)(CO) ₃ O ₂ CH	$7.61(t), 7.81(s), 8.19(t), 8.39(d), 9.04(d)^{e}$	2008,1917,1895d	$+1.37, -1.29, -1.71^{e}$	382d
fac-Re(bpy)(CO) ₃ O ₂ COH	$7.78(t), 8.36(t), 7.77(d), 9.06(d)^{f}$	g	-1.31^{f}	362f
fac-Re(bpy)(CO) ₃ H	1.54(s), 7.49(t), 8.05(t), 8.36(d), 9.14(d) ^c	1993,1905,1888	$+0.90,^{h}-1.46d$	415 ^d
		(2018)i		

a Shifts downfield from tetramethylsilane. b Measured vs. standard calomel electrode with 0.1 m tetraethylammonium perchlorate for MeCN solution, or 0.2 m for CH₂Cl₂ solution. Determined at a scan rate of 100 mV/s at a Pt working electrode. c Refers to the maximum of the longest wavelength metal to ligand charge transfer transition. d Recorded in CD₂Cl₂ or CH₂Cl₂ solution. e Recorded in CD₃CN or MeCN solution. Recorded in (CD₃)₂SO or Me₂SO solution. Low solubility results in inaccurate values. E_p value at 100 mV/s scan rate. i Value in parentheses refers to assigned Re-H stretch.

initiated by irradiation into the MLCT (metal to ligand charge transfer) $[\pi^*(bpy) \leftarrow Re^I]$ transitions, 3.8 but it is not clear whether the photoreactivity is inherent to the MLCT states or whether these states act as intramolecular sensitizers of another reactive excited state or states.

As a last point, both the thermal and photochemical properties of fac-Re(bpy)(CO)₃H may be capable of providing a basis for a photoelectrochemical cell¹⁸ which would function to reduce CO2 to soluble formate salts while producing current.

The authors thank the Gas Research Institute for funding and Dr. David Harris and Mr. Nigel Surridge for the n.m.r. spectra.

Received, 4th April 1984; Com. 481

References

- 1 J. Hawecker, J.-M. Lehn, and R. Ziessel, J. Chem. Soc., Chem. Commun., 1983, 536.
- 2 E. W. Abel and G. Wilkinson, J. Chem. Soc., 1959, 1501.
- 3 M. S. Wrighton and D. L. Morse, J. Am. Chem. Soc., 1974, 96,
- 4 R. Ziessel, Nouv. J. Chim., 1983, 7, 613.

- 5 R. Eisenberg and D. E. Hendricksen, Adv. Catal., 1979, 28, 79.
- 6 M. E. Volpin and I. S. Kolomnikov, 'Organometallic Reactions,' vol. 5, eds. E. I. Becker and M. Tsutsui, Wiley Interscience, New York, 1975, pp. 313-386.
- 7 J. A. Ibers, Chem. Soc. Rev., 1982, 57.
- 8 J. V. Caspar and T. J. Meyer, J. Phys. Chem., 1983, 87, 952.
- 9 J. V. Caspar, B. P. Sullivan, and T. J. Meyer, Inorg. Chem., 1984, 23, in the press
- 10 G. A. Allen, B. P. Sullivan, and T. J. Meyer, J. Chem. Soc., Chem. Commun., 1981, 793.
- 11 J. V. Caspar, B. P. Sullivan, and T. J. Meyer, Organometallics, 1983, **2**, 552.
- 12 B. P. Sullivan, J. V. Caspar, S. R. Johnson, and T. J. Meyer, Organometallics, 1984, 3, in the press.
- 13 B. P. Sullivan and T. J. Meyer, J. Chem. Soc., Chem. Commun., 1984, 403.
- 14 For a related example, see, M. G. Bradley, D. A. Roberts, and G. L. Geoffroy, J. Am. Chem. Soc., 1981, 103, 379.
- 15 P. A. Lay, R. H. Magnuson, J. Sen, and H. Taube, J. Am. Chem. Soc., 1982, 104, 7658.
- 16 D. St. C. Black, G. B. Deacon, and N. C. Thomas, Aust. J. Chem., 1982, 35, 2445.
- 17 D. J. Darensbourg, M. B. Fischer, R. E. Schmidt, Jr., and B. J. Baldwin, J. Am. Chem. Soc., 1981, 103, 1297.
- 18 B. P. Sullivan, W. J. Dressick, and T. J. Meyer, J. Phys. Chem.,
- 1982, 86, 1473.